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This paper investigates the resolution and robustness of the multiple signal classification (MUSIC) method to lo-
cate small three-dimensional (3D) anisotropic scatterers near the medium interface in a multilayered background.
An enhancedMUSIC algorithm developed for free-space background is extended to solve such a problem. Because
its indicator is built in a stable signal subspace, which is continuous across the medium interface, better stability
and higher resolution against noise are observed for the proposedmethod compared to the known standardMUSIC
method. Numerical simulations with various medium interfaces and noise levels are conducted to verify the per-
formance of the introduced MUSIC method. © 2012 Optical Society of America
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1. INTRODUCTION
Inverse scattering methods [1–8] are widely used in optical
imaging systems such as Optical Diffraction Tomography
(ODT). A sample is illuminated by lights from various
directions and scattered fields are measured to retrieve the
scatterer’s characteristic. This technique is promising in re-
search of medical imaging for detection of tumors in soft tis-
sue [9] as well as in the semiconductor industry for defect
inspection [10]. In this paper, we concentrate on an optical
imaging method for samples buried in a layered background
medium. For extended scatterers, this issue has been studied
in [8], where a fast and efficient three-dimensional (3D) semi-
quantitative imaging method was introduced. Differently, we
consider imaging methods for small 3D scatterers here. The
multiple signal classification (MUSIC) method [6,7,11–17] is
the target solution, which is a type of qualitative, noniterative,
and deterministic method to locate small scatterers. An indi-
cator function (also known as pseudospectrum function),
which peaks at the locations of scatterers, is built in the
MUSIC method based on the analysis of multistatic response
(MSR) matrix [13,17]. So the MUSIC method is also a kind of
sampling method. We indicate that many other noniterative
imaging methods of small scatterers such as the decomposi-
tion of the time reversal operator (DORT) [18] or its related
method [19] already exist and we do not plan to give a full
review here. Compared to other methods, the MUSIC method
is suitable to locate close scatterers at a fixed frequency with
super-resolution [20].

Most known MUSIC methods are introduced with homoge-
neous background medium where Green’s function can be
obtained analytically. Otherwise, numerical calculation of
Green’s function is necessary. In [15], the finite element meth-
od was applied where the known background obstacles were

of finite size. Although the Green’s function in a multil-
ayered infinite medium [21] is semianalytical (in the form of
Sommerfeld integrals), numerical integration is still needed.
There are already some known MUSIC methods [11–13] for
a layered medium. In [11] and [12], two-dimensional (2D)
cases were studied in half space and a three-layer background
medium, respectively. In [13], 3D scatterers in half space were
detected. In all these papers, the standard time reversal MU-
SIC method was used and all small scatterers were isotropic.

The main interest of this paper is to locate 3D anisotropic
small scatterers in a multilayered medium. Different from [13],
we focus our point on locating scatterers near the medium
interface, which is difficult to solve by the MUSIC method be-
cause of strong influence by the medium interface. In such a
case, the stability and imaging resolution of the MUSIC meth-
od against noise are mainly concerned. We find the perfor-
mance of the standard MUSIC method depends on the
choice of the orientation of test diople. Furthermore, the in-
dicator of standard MUSIC method is discontinuous across
the interface, which makes it difficult to judge the location
of scatterers near interface. To increase the stability and re-
solution of the imaging algorithm, we apply an enhanced
MUSIC method to locate scatterers in a multilayered medium.
Its indicator is built with a stable signal subspace and the op-
timal test direction is chosen at each test node. Therefore, it is
more stable against noise. Moreover, we prove that the new
indicator function is continuous across interfaces. Therefore,
our method has better performance than the standard one to
locate 3D anisotropic scatterers that are near medium inter-
face. Numerical simulations confirm the above advantages of
the enhanced MUSIC method.

The structure of this paper is as follows. In Section 2,
the forward model of electromagnetic scattering in a layered
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medium is built based on the Foldy–Lax equation. Then the
inverse scattering model as well as the standard and enhanced
MUSIC methods are introduced in Section 3. Numerical exam-
ples are shown in Section 4. Finally, we make conclusions in
Section 5.

2. FORWARD SCATTERING MODEL
Let vectors and matrices be denoted by letters with single
and double bars, respectively. The background consists
of several layers of media, each being homogeneous. Con-
siderM 3D spherical anisotropic scatterers at fs̄jgMj�1, which
are illuminated by electromagnetic waves from N trans-
mitters located at fr̄jgNj�1. Suppose the receivers are co-
incident with transmitters. Each transceiver consists of
three antennas, oriented in the x, y, and z directions, re-
spectively. The permittivity tensor of the mth scatterers
is given as

¯̄ϵm �

2
64
ϵxxm ϵxym ϵxzm
ϵyxm ϵyym ϵyzm

ϵzxm ϵzym ϵzzm

3
75 � ¯̄Ξ−1

E;m

2
664
ϵ�1�m 0 0

0 ϵ�2�m 0

0 0 ϵ�3�m

3
775 ¯̄ΞE;m; (1)

where ¯̄ΞE;m is the rotation transforming matrix composed
by Euler angles [17], and ϵ�j�m (j � 1, 2, 3) is the permittivity
element aligned to the jth electric principal axis of the mth
scatterer. Suppose all materials are nonmagnetic,
i.e., μ � μ0.

A. The MSR Matrix
Suppose Ēin

t �s̄j� is the total electric field incident upon the jth
scatterer at s̄j and Ēsca�r̄l� is the scattered field measured by
the antenna at r̄l. Following a similar analysis as in [17], the
Foldy–Lax equation of electromagnetic scattering for small
scatterers in a layered medium can be obtained as

Ēin
t �s̄j� � Ēin

0 �s̄j� �
XM

m�1;m≠j

fiωμ0 ¯̄G�s̄j ; s̄m� · ¯̄ξm�ϵb�s̄m�� · Ēin
t �s̄m�g

j � 1; 2;…; M; (2)

Ēsca�r̄l� �
XM
m�1

fiωμ0 ¯̄G�r̄l; s̄m� · ¯̄ξm�ϵb�s̄m�� · Ēin
t �s̄m�g;

l � 1; 2;…; N; (3)

where ϵb�s̄m� is the background permittivity at s̄m, Ēin
0 �s̄j� is

the background incident wave at s̄j ,
¯̄G�s̄j ; s̄m� is the dyadic

Green’s function in a layered medium [21], and

¯̄ξm�ϵb�s̄m�� � −i4πkb�s̄m�a3m
��������������
ϵb�s̄m�
μ0

s
¯̄Ξ−1
E;m

· diag
�
ϵ�1�m − ϵb�s̄m�
ϵ�1�m �2ϵb�s̄m�

;
ϵ�2�m − ϵb�s̄m�
ϵ�2�m � 2ϵb�s̄m�

;
ϵ�3�m − ϵb�s̄m�
ϵ�3�m � 2ϵb�s̄m�

�

· ¯̄ΞE;m (4)

is the polarization parameter with kb�s̄m� the wavenumber at
s̄m and am the radius of the mth scatterer. We should indicate

that ¯̄ξm in Eq. (4) is consistent with the result in [13] obtained
by asymptotic analysis.

Based on Eqs. (2) and (3), the MSR matrix [14,17] is
obtained as

¯̄A � ¯̄R · ¯̄Λ · � ¯̄I − ¯̄Φ · ¯̄Λ�−1 · ¯̄RT; (5)

where ¯̄R�i; j� � iωμ0
¯̄G�r̄i; s̄j�, the superscript T denotes trans-

pose, ¯̄Φ�j; k� is null for j � k and otherwise iωμ0
¯̄G�s̄j ; s̄k�,

¯̄I is the identity matrix, and ¯̄Λ � diag� ¯̄ξ1�ϵb�s̄1��;
¯̄ξ2�ϵb�s̄2��;…; ¯̄ξM�ϵb�s̄M ���.

3. INVERSE SCATTERING PROBLEM AND
MUSIC METHODS
The inverse scattering problem is to determine locations of
small scatterers from the measured scattered fields stored

in 3N × 3N matrix ¯̄A, which is called the MSR matrix. The

element of ¯̄A in the ith row and jth column denotes the
measured scattered field at the ith antenna for a unitary ex-
citation at the jth antenna. Define 3N × 3 test matrix
¯̄Q�s̄� � � ¯̄GT �r̄1; s̄�; ¯̄GT �r̄2; s̄�;…; ¯̄GT �r̄N ; s̄��T , where ¯̄G�r̄j ; s̄� is
the dyadic Green’s function in a layered medium [21] observed
at r̄j due to source at s̄.

Suppose the singular value decomposition (SVD) of the

MSR matrix is ¯̄A � ¯̄U ¯̄Σ ¯̄VH , where H indicates the conjugate

transpose. In a component form, there is ¯̄A · v̄p � σpūp,
p � 1; 2;…; 3N . Define two subspaces

US � spanfūp; σp > 0g � spanfū1; ū2;…; ūKg;
UN � spanfūp; σp � 0g � spanfūK�1; ūK�2;…; ū3Ng;

which are called signal and noise spaces, respectively. The

integer K denotes the rank of the MSR matrix ¯̄A.

A. Two Kinds of Indicators in MUSIC Methods
The MUSIC method is based on the fact that if the size of the
MSR matrix ¯̄A is sufficiently large, there is

¯̄Q�s̄� · ā ∈ US if and only if s̄ ∈ fs̄1; s̄2;…; s̄Mg

for arbitrary nonzero 3D vector ā. For detailed proof, please
refer to [14,22].

Therefore, the indicator function of standard MUSIC [13] is
defined as

W1�ā; s̄� �
1P3N

i�K�1 jūH
i · ¯̄Q�s̄� · āj2

; (6)

where ā is an arbitrarily given test direction. The indicator
W1�ā; s̄� peaks at any of the scatterer locations fs̄jgMj�1.

W1�ā; s̄� in Eq. (6) is defined with noise space UN . Alterna-
tively, we can also find its equivalent form with signal space
US . Let v̄�ā; s̄� � ¯̄Q�s̄� · ā. Then v̄�ā; s̄� has zero angle with US

if and only if s̄ ∈ fs̄jgMj�1. For a given v̄�ā; s̄�, suppose its angle
with US is θ�ā; s̄�. Then θ�ā; s̄� satisfies that

cos�θ�ā; s̄�� � jq̄�ā; s̄�j
jv̄�ā; s̄�j ; (7)
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where j · j denotes the vector length and q̄�ā; s̄� �
�ū1; ū2;…; ūK �H · v̄�ā; s̄� is the orthogonal projection of
v̄�ā; s̄� into US . With the help of the definition in Eq. (7),
we can rewrite W1�ā; s̄� with signal space US as

W1�ā; s̄� �
1

�1 − cos2�θ��jv̄�ā; s̄�j : (8)

In comparison, the indicator of the enhanced MUSIC meth-
od is derived with three changes done on W1 in Eq. (8). First,
at each test node s̄, the fixed ā inW1 is changed to the optimal
one āopt�s̄� [14], which makes v̄�ā; s̄� have the smallest angle
θmin�s̄�with US . Second, the whole signal space US is changed
to a more stable subspace UL � spanfū1; ū2;…; ūLg, where
L < K . Third, a normalization has been done on v̄�ā; s̄�. There-
fore, the indicator function of the enhanced MUSIC method is
defined as

W2�āopt�s̄�; s̄� �
1

1 − cos2�θmin�s̄��
: (9)

At each test node s̄, θmin�s̄� can be determined by searching
āopt�s̄� (jāopt�s̄�j � 1) from

āopt�s̄� � arg max
ā

PL
i�1 jūH

i · ¯̄Q�s̄� · āj2

j ¯̄Q�s̄� · āj2
; (10)

which needs to solve an eigendecomposition of a 3 × 3 matrix
[14]. On the other hand, the dimension L of stable subspace
UL in Eq. (9) needs to be determined based on the solvability
of āopt. Here we list the rule to determine L without proof. For
detail, please refer to [14]. To locate the jth scatterer, L should
be at least Pj � 1, where Pj �

P
M
i�1;i≠j rank� ¯̄ξi�. Then the mini-

mal L to locate all of the scatterers is L � maxjfPjg � 1, which
is smaller than K .

B. Comparison of the Two MUSIC Methods in Layered
Medium
Two issues of MUSIC methods in a layered medium, the sta-
bility against noise and the continuity of indicators at medium
interface, are discussed here. They are closely related to the
imaging resolution of MUSIC methods.

Firstly, the MUSIC method is said to be stable if its results
do not change too much with various test directions and noise

levels. We denote the noise-contaminated MSR matrix as ¯̄A0.

Suppose its SVD is ¯̄A0 · v̄0p � σp
0ū0

p, p � 1; 2;…; 3N . All singular

values of ¯̄A0 are positive (σp 0 > 0 for p � 1; 2;…; 3N) due to
the existence of noise. Therefore, it is difficult to separate
the signal and noise spaces directly as the noiseless case. If

the signal and noise spaces of ¯̄A0 are formally represented as

U 0
S � spanfū0

1; ū
0
2;…; ū0

Kg;
U 0

N � spanfū0
K�1; ū

0
K�2;…; ū0

3Ng;

then U 0
N must overlap with US due to noise. As seen in Eq. (8),

W1�ā; s̄� is constructed with the whole signal space US . For a
given test direction ā, if v̄�ā; s̄j� falls into the overlapping re-
gion US∩U 0

N , the scatterer s̄j may be lost (depending on the
overlapping level) by the indicator W1�ā; s̄�. Although the test
direction ā obviously affects the imaging results, there is no
rule given in the standard MUSIC method for choosing proper

ā in a layered medium, especially when scatterers are near
medium interface.

In comparison, W2�āopt�s̄�; s̄� is defined in a subspace UL

instead of US , as shown in Eq. (9). Since US overlaps with
U 0

N mostly at those singular vectors corresponding to small
singular values, the overlapping effect is suppressed in UL

compared with US . This is because the former is a subspace
of the latter by taking the first L leading components. Further-
more, optimal test direction is chosen at each node with very
cheap computational cost. For the two reasons, W2�āopt�s̄�; s̄�
is said to be more stable against noise than W1�ā; s̄�.

Secondly, W1�ā; s̄� is discontinuous across the medium in-
terface if the test direction ā is not parallel to this interface
plane. Suppose one medium interface is located at plane
z � z0. For a source at s̄, the dyadic Green’s function in
the layered medium has form ¯̄G�r̄; s̄� � �ḠT

x ; Ḡ
T
y ; Ḡ

T
z �T �r̄; s̄�,

where Ḡx, Ḡy, and Ḡz are the first, second, and third rows
of ¯̄G�r̄; s̄�, respectively. The boundary condition requires that
the tangential components of electric field and the normal
component of electric displacement field are continuous at
interface, namely

Ḡx�r̄�; s̄� � Ḡx�r̄−; s̄�; Ḡy�r̄�; s̄� � Ḡy�r̄−; s̄�;
ϵr�r̄��Ḡz�r̄�; s̄� � ϵr�r̄−�Ḡz�r̄−; s̄�; (11)

where r̄ is an arbitrary position on interface, r̄�;− represents
the position approaching r̄ from up and down layers, respec-
tively, and ϵr�r̄�;−� are the corresponding relative permittiv-
ities in the two neighboring layers.

From the reciprocity of dyadic Green’s function, ¯̄Q�s̄� in
Eq. (6) can be rewritten as

¯̄Q�s̄���Q̄x;Q̄y;Q̄z�� � ¯̄GT �r̄1; s̄�; ¯̄GT �r̄2; s̄�;…; ¯̄GT �r̄N ;s̄��T ; (12)

� � ¯̄G�s̄; r̄1�; ¯̄G�s̄; r̄2�;…; ¯̄G�s̄; r̄N��T : (13)

From Eq. (11), when the test node s̄ is on the interface, there is

Q̄x�s̄�� � Q̄x�s̄−�; Q̄y�s̄�� � Q̄y�s̄−�;
ϵr�s̄��Q̄z�s̄�� � ϵr�s̄−�Q̄z�s̄−�: (14)

Q̄z�s̄� jumps at the medium interface plane, as seen from
Eq. (14). Therefore, from the definition of indicator in
Eq. (6),W1�ā; s̄� is discontinuous across the medium interface
if ā is not parallel to interface plane, e.g., ā � �0; 0; 1�T . Parti-
cularly, the discontinuity will be more obvious if the permit-
tivity contrast of the two sides increases. Because the MUSIC
method locates scatterers by the contrast of indicator values
at different test nodes, the discontinuity of W1�ā; s̄� makes
it difficult to judge the locations of scatterers near medium
interface.

In comparison, W2�āopt�s̄�; s̄� is continuous at interface
nodes. This is due to use of the optimal test direction at each
node in W2�āopt�s̄�; s̄�. For arbitrary test node s̄ on interface,
¯̄Q�s̄�� and ¯̄Q�s̄−� are connected by Eq. (14). This implies
θmin�s̄�� and θmin�s̄−� must be the same. If the optimal test di-
rection at s̄� is āopt�s̄�� � �a1; a2; a3�T , then the optimal test
direction āopt�s̄−� at s̄− should be āopt�s̄−� � b̄ ∕ jb̄j with
b̄ � �a1; a2; ϵ�s̄−� ∕ ϵ�s̄�� · a3�T . So W2�āopt�s̄�; s̄� is continuous
across the medium interface. This is the second advantage
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of enhanced MUSIC over the standard one in a layered
medium.

Finally, we also indicate two major differences of our paper
compared to [14]. First, the concerned background medium
here is layered and the aforementioned discontinuity of the
pseudospectrum at interface needs to be analyzed. Second,
comparisons between the two MUSIC methods are done here
for nondegenerate scatterers, whereas [14] focuses mainly on
degenerate scatterers.

4. NUMERICAL SIMULATIONS
In this section, some numerical simulations are done to verify
the theoretical discussions above. Comparisons are made
between the standard and enhanced MUSIC methods. Two
main cases are considered, i.e., different medium interface
locations and different noise levels. The experimental con-
figuration is introduced first. We consider a three-layer
background medium here, as shown in Fig. 1. Suppose the
working frequency is 300 MHz. The permittivities from top
to bottom layers are ϵ0, 5ϵ0, and ϵ0, respectively, where ϵ0

is the permittivity of free space. There are 16 receivers (trans-
mitters are coincident with receivers) locating at the z � 10λ0
plane, where λ0 is the wavelength of the uppermost layer.
Transceivers are uniformly distributed in x-axis and y-axis.
Half of the transceivers are along the x-axis, while the rest
are along the y-axis, where they are centered at the
�0; 0; 10λ0� and the distance of two neighboring transceivers
is 5λ0. The two medium interfaces are located at z � z0λ0
and z � z1λ0 (z0 < z1), respectively. The dyadic Green’s func-
tion in a layered medium is computed by the method in [21].

Three scatterers are considered with locations s̄1 �
�−0.177; 0.103; 0.103�λ0, s̄2 � �0.192; 0.136; 0.136�λ0, and s̄3 �
�−0.008;−0.169;−0.169�λ0. All three of these scatterers

have radius a � λ0
30 and their permittivities are ¯̄ϵ1 �

diag�3ϵ0; 3ϵ0; 3ϵ0�, ¯̄ϵ2 � diag�2ϵ0; 3ϵ0; 3ϵ0�, and ¯̄ϵ3 � diag�2ϵ0;
2ϵ0; 4ϵ0�, respectively. Correspondingly, the Euler angles in
Eq. (1) are set as �π3 ; 2π5 ; 4π7 �. The domain of interest is chosen
as a square domain �−0.3; 0.3�λ0 × �−0.3; 0.3�λ0 centered at
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Fig. 1. (Color online) Problem sketch of inverse scattering: (a) the 3D view of the problem where the green plane indicates the medium interface;
(b) the 2D view of scatterer locations on y � z plane, where the square domain of interest is denoted by blue points and the red points are the
locations of scatterers.
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Fig. 2. (Color online) Singular values of MSR matrices with 30 dB
white Gaussian noise under different medium interfaces: (a)
�z0; z1� � �0; 0.2�λ0, (b) �z0; z1� � �−0.2; 0.2�λ0, (c) �z0; z1� � �0; 0.05�λ0,
and (d) �z0; z1� � �0; 0.12�λ0.
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Fig. 3. (Color online) 10-base-logarithm pseudospectrums of
MUSIC algorithms with different medium interfaces. The white dotted
line represents the interface location. Each column corresponds
to results with one given interface configuration: the first column
�z0; z1� � �0; 0.2�λ0, the second column �z0; z1� � �−0.2; 0.2�λ0, the
third column �z0; z1� � �0; 0.05�λ0, and the fourth column �z0; z1� �
�0; 0.12�λ0. Each row corresponds to the results of a method: the first
row enhanced MUSIC, the second row standard MUSIC with
ā1 � �1; 1; 1�T , the third row standard MUSIC with ā2 � �1; 0; 0�T ,
and the fourth row standard MUSIC with ā3 � �0; 0; 1�T .
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(0,0,0) on the y � z plane, as shown in Fig. 1, in which the
horizontal axis represents the x-axis and the vertical axis is
along line y � z.

Four groups of interfaces are considered in this paper. They
are �z0; z1� � �0; 0.2�λ0, �−0.2; 0.2�λ0, �0; 0.05�λ0, and �0; 0.12�λ0,
respectively. Three different test directions, ā1 � �1; 1; 1�T ,
ā2 � �1; 0; 0�T , and ā3 � �0; 0; 1�T are tested for the standard
MUSIC method. K � 9 and L � 7 are used respectively in the
two indicators in Eqs. (8) and (9).

In the first case, 30 dB additive Gaussian white noise [14] is
added to the MSR matrix obtained under different medium
interface locations. From the above problem configuration,
it is known that the rank of ¯̄A without noise is 9. As seen
in Fig. 2, we observe that the small singular values raise a
lot due to noise and this makes it difficult to distinguish
the signal and noise spaces. The indicator values (pseudos-
pectrums) of the two MUSIC methods are shown in Fig. 3.
In this figure, each column corresponds to pseudospectrums
of the two MUSIC methods with a group of given interface
locations. And from top to bottom rows, the results are in
sequence the enhanced MUSIC with āopt and the standard
MUSIC with āj , j � 1, 2, 3. The white dotted line represents
the interface location in the domain of interest.

We observe that the standard MUSIC method fails to locate
all the three scatterers in most cases. Its results turn out to
depend prominently on test directions. Particularly, the pseu-
dospectrums of standard MUSIC with ā1 and ā3 are discontin-
uous at the interfaces and the discontinuity of ā3 is much
stronger than ā1. This is because they are not parallel to inter-
face planes and ā3 has a larger angle with interface compared
to ā1. In comparison, the enhancedMUSICmethod works well
in all four kinds of interface configurations. Obviously, its
pseudospectrums are continuous across interfaces. For this
example, the performance of the standard MUSIC method de-
pends seriously on the test direction and interface locations.
Its results become worse when the test direction is perpendi-
cular to interface plane or scatterers are close to interface. In
comparison, the enhanced MUSIC method is stable and has
better resolution. These results are consistent with the analy-
sis in Section 3.

In the second case, we compare the two MUSIC methods
with higher noises. Different noise levels such as 25, 20, and
15 dB are tested respectively. Only medium interfaces at
�z0; z1� � �0; 0.05�λ0 are considered here. The results of other
three interface configurations shown above are similar and
omitted here. Figure 4 shows the singular values of the
MSR matrix with and without noise. From this figure, we
see that more singular values raise when noise level increases.

This means the overlapping region of US andU 0
N are enlarged,

which makes the problem more difficult to solve by the
MUSIC method. The corresponding pseudospectrums of the
two MUSIC methods are shown in Fig. 5. We observe that
the results of enhanced MUSIC are still satisfactory for higher
noises. In comparison, the results of the standard MUSIC
method become worse when noise increases. This example
verifies the good stability of the enhanced MUSIC method
against noise.

5. CONCLUSIONS
In this paper, small 3D anisotropic scatterers have been suc-
cessfully retrieved by the enhancedMUSIC algorithm in a mul-
tilayered medium, which has been numerically verified by
different interface configurations and noise levels. Our meth-
od builds the indicator that uses the signal subspace and seeks
an optimal test direction at each node. Therefore, it has a con-
tinuous indicator across the medium interface and it is more
stable against noise. These good characteristics make the en-
hanced MUSIC method a better candidate than the standard
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Fig. 4. (Color online) Singular values of MSR matrices with different noise levels where medium interfaces are at �z0; z1� � �0; 0.05�λ0: (a) 25 dB,
(b) 20 dB, and (c) 15 dB.
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Fig. 5. (Color online) 10-base-logarithm pseudospectrums of MUSIC
algorithms with different noise levels where medium interfaces are at
�z0; z1� � �0; 0.05�λ0. The white dotted line represents the interface lo-
cation. Each column corresponds to results with one given noise level:
the first column 25 dB, the second column 20 dB, and the third column
15 dB. Each row corresponds to results of a method: the first row en-
hanced MUSIC, the second row standard MUSIC with ā1 � �1; 1; 1�T ,
the third row standard MUSIC with ā2 � �1; 0; 0�T , and the fourth row
standard MUSIC with ā3 � �0; 0; 1�T .
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one to locate scatterers near the interface in a layered
medium.

We should indicate that the measured data in this paper is
full wave, i.e., both the intensity and phase of scattered field
are available. In some optical imaging systems, when the
working frequency is too high, only intensity data can be
obtained because it is difficult to measure phase data at high
frequencies. Therefore, an extension of the present method to
intensity-only data is our future work.
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